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Part two of this study (to be published in the next issue of The 
Refractories Engineer) reviews the advancements such as rapid 

turnaround technologies, improved alkali and slag resistant 
monolithics, and next generation oxide-bonded silicon carbide tiles. 
Case studies demonstrate the effectiveness of new refractory 
materials, including fused mullite monolithics and innovative bonding 
systems, in extending service life and improving operational efficiency. 
By addressing value in use – through cost, longer life, and reduced 
refractory waste – this paper highlights how refractory innovations 
contribute to the EFW industry’s future and will help evolve the industry 
towards a more sustainable future.

LOW CARBON FUTURE
At first glance, the incineration of municipal 
waste as a low carbon solution may seem 
counterintuitive. The burning of 
hydrocarbons to produce electricity is 
facing strong push back from the public, 
but the energy from waste industry has 
grown significantly in the last ten years. In 
five years the number of energy from 
waste facilities in the UK has increased 
from 38 to 52, and the Department for 
Environment, Food and Rural Affairs notes 
66 EFW facilities are under development(1-3).

The EU and UK, encourages waste 
prevention as its first priority as stated in 
article 4 of the EU Waste Framework 
Directive (2008/98/EC) (4), with disposal as 
the least favourable option (fig.1). With 
best intentions, landfilling remains the 
method most commonly used for 
managing waste in many European 
countries, which is up to eighty per cent in 
some cases(2). Considering the present 
impact of waste disposal and subsequent 
methane formation, recovering energy 
from unrecyclable waste allows us a more 
efficient usage of resource without 
resorting to landfill.  

This desire for efficiency ultimately 
means higher combustion temperatures in 
the furnaces from calorific pre-sorting(5). 
With elevated combustion temperatures, 
refractories witness significant levels of 
ashes and corrosive flue gases, which in 
turn leads to limited refractory 
performance(6). In addition to the 
challenging environment, plant operators 
require greater value in use, either by 
reducing down-time or extending 
campaign lengths between major outages. 
As with other high temperature industries, 
a trend in the energy from waste market 
has been the introduction of rapid 
turnaround products(7), which offer 
immediate savings to the end user by 
speedily returning their process back to 
service following an outage. Several rapid 
turnaround technologies exist from low 
chemically combined water options to 
permeability enhancing solutions(8-11).

Application and Products
In Europe and the USA, combustion 
chambers of municipal solid waste EFW 
facilities are typically grate or stoker type 
(fig.3), where primary air is introduced 
below the waste to allow for efficient 
combustion(2). Refractories in the 
combustion chamber sidewalls are 
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typically high alumina low cement monolithics with 
enhanced alkali resistance. Gunning is often a preference 
for ease of installation, with high alumina gunning used for 
the combustion roof and zones up to the lower first pass.

Secondary air is introduced at the lower first pass or 
roof to allow for any volatile combustion. Silicon carbide 
tiles are often present in the first pass area to promote 
thermal transfer from flue gas and to protect the waterwall 
boiler tubes, which contain the high pressure water that is 
heated to produce steam then electricity by means of 
turbines(6).

TYPICAL CONCERNS
Refractory maintenance is critical to continued operation 
of an EFW boiler and plant operators are looking to high 
thermal conductivity solutions for heat flow efficiency, 
along with rapid turnaround solutions. However, the 

refractory engineer must contend with significant alkali attack, potential 
chlorides and sulphides, ash and slag fouling, oxidation, and abrasion or 
erosion (Table 1, fig.2).

Alkali Attack
Alkali attack from corrosive vapour is a key concern for refractories in EFW, 
where volatilised soda and potash penetrate and condense below the 
surface, potentially forming low melting point eutectics upon reaction with 
silica, and in turn, corroding the refractory matrix. The resulting precipitated 
phases promote volume changes that cause cracking or ‘bursting’ of the 
refractory(12). At temperatures below 1100°C, when burning feedstock high in 
soda, it is believed that the amorphous silicate is corroded to precipitate 
thenardite (Na2SO4), with mullite (3Al2O3·2SiO2) being corroded to form albite 
(Na(AlSi3O8)) and secondary alumina(13,14). Similarly, fuels which contain high 
levels of potash, such as waste wood, can attack silicates to precipitate 
kaliophilite (KAlSiO4) amongst other phases(15). Corrosion of alumina to form 
β-Alumina (Na2O·11Al2O3) is more favourable when the temperature is above 
1100°C. Prigent et al. considers the temperature gradient key to inhibiting 
corrosion and, by modification of the isotherm inside the refractory, they 
suggest that condensation of alkali sulphates in the porosity of the 
refractory could be prevented(6).

Ash, Slag, Residue Corrosion
Surface fouling followed by corrosion can occur due to the high levels of 
calcia in typical fly ash. Reviews on the fouling tendency of biomass fuels 
indicate that no universal relationship exists between the operating 
environment and the level of fouling. However, a positive correlation has 
been observed between high alkaline ash content and increased fouling(16). 
The slag deposits can form in layers, and comprise of akermanite 
(Ca2Mg(Si2O7)), gehlenite (Ca2Al2SiO7) and wollastonite (CaSiO3), which 
precipitate out of an alkaline enriched phase. The slag reacts with matrix 
products in high alumina monolithics to precipitate anorthite (CaAl2Si2O8) 
and melilite (Ca2(Al,Mg,Fe)((Al,Si)SiO7)) along grain boundaries(14). Gas 
vesicles forming on silicon carbide products, where slag adheres to the 
surface, indicate oxidation during service(17).  

Oxidation
Process operators require high thermal conductivity to transfer heat from 
flue gases to the waterwall boiler tubes. Silicon carbide (SiC) tiles therefore 
are used to protect the high pressure tubes and conduct heat. At 
temperatures exceeding 1000°C, the oxidation kinetics of SiC are generally 
favourable. However, in high temperature steam environments, the oxidation 
rate increases significantly(17). As steam is a combustion product of burning 
hydrocarbons, SiC tiles are exposed to very difficult conditions, especially 
when burning high moisture waste such as biomass fuel or wood. Active 
oxidation of SiC can occur depending on the oxygen potential, forming 

Fig.2 Typical chemistry of various EFW slag and bottom ash

Fig.3 Typical schematic of a grate fired boiler, showing the fuel chute 
in blue, with the combustion chamber in red, and the first pass directly 
above in pink and burgundy

Bottom Ash Slag Surface Slag

Biomass 
Inc.

Medical 
Inc.

Gassifier Biomass 
Inc.

MSW

Na2O 1.89 6.99 0.38 2.20 1.18

MgO 2.42 1.32 3.95 3.46 3.17

Al2O3 12.90 10.81 12.77 14.56 8.68

SiO2 39.60 50.46 29.14 36.34 39.40

P2O5 0.49 0.60 2.76 2.46 2.62

K2O 1.37 0.64 <0.05 <0.10 0.14

CaO 19.59 9.16 42.42 32.58 36.79

TiO2 3.22 1.58 3.96 3.24 3.49

Mn3O4 0.25 0.14 0.18 0.16 0.13

Cr2O3 0.32 0.87 0.09 <0.10 0.05

Fe2O3 14.84 9.57 3.93 4.34 3.70

Others 3.11 7.86 0.42 0.66 0.65

Table 1 Typical bottom ash and surface slag chemistries from various 
EFW sites
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volatile silica species and weakening the tile structure. Typically, passive oxidation occurs 
during in service(18), particularly in the middle to upper sections of the first pass where tiles 
swell and expansion joints disappear. The reaction product from passive oxidation could be 
in the form of amorphous silica, leading to attack by slag, forming para-wollastonite 
(CaSiO3), and alkalis that form sanidine (K(AlSi3O8)) or microcline (K(AlSi3O8)). Otherwise, 
dependant on conditions, cristobalite can form and has been found in forensic post service 
analysis(17). Both the formation of cristobalite, and precipitation of plagioclase feldspar 
reaction products lead to significant expansion, disturbing and cracking the glaze and 
allowing corrosive gas deeper into the tile(6). Once silica has formed from passive or active 
oxidation, it can become dissolved in the surface slag. Forensic samples show that 
macropores and permeability is often left around the SiC grain, beginning a cyclic wear 
pattern(17).

To be continued in Part 2…
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